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Leading research requires the use of
large-scale resources across DOE

 Computational facilities — ALCF, NERSC, and OLCF

BES facilities — SNS/Neutrons, APS/hard x-rays, ALS/soft x-rays, LCLS/coherent
beams, many others..

BER data centers — ARM, CDIAC, CMIP-5 (ESGF), many others..

Multiple petabytes stored across these geographically distributed resources
today, quickly approaching an Exabyte

Many examples of coupling data today:
— Experimental data from SNS coupled to models run at the OLCF & NERSC

— Climate simulations run at ALCF and OLCF validated with BER data sets at
ORNL data centers

— Real-time visualization of tomography data taken at APS
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The Problem Space

* Heterogeneous network infrastructure
— Different fabrics for IPC, SAN, LAN, and WAN

» Variety of data sources
— Difficult to optimize performance for data movement

 Competing workloads
— Data movement to a remote site could choke out a 300,000 core simulation

Our Work

* A portable high-performance network overlay transport - CCI
— single API for network communication
— optimized for the WAN

* An optimized I/O scheduling infrastructure — Z Scheduler
— Optimized for common file systems, parallel and single system

» Aworkload aware scheduling infrastructure — Z Scheduler
— Arbitrates competing workloads on the end-to-end path

%O\K RII)GI NATIONAL LABORATORY

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE



Our Vision

* An optimized end-to-end data path to couple facilities

Simulation
Data

“Router” /
Data Aggregator

“Router” /
Data Aggregator

Data

PbJe calculation (DFT) PbTe experiment (INS)

Parallel
File System
Example: , ab-initio simulations for
ferroelectrics/thermoelectrics. Focus
on width of dispersions
“‘Router” /
Data Aggregator
X-ray

Data
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Common Communication Interface

* What is CCI? 3
— Ageneric, communication abstraction layer 25
* Platform for experimentation and production 0 e {0GbE: UDP-CC
— Supports a number of networks 2 —10GbE: Linux.Direct.

CCl
e==10GbE: Vendor-CCl

(SAN, LAN, WAN)
* InfiniBand, Gemini, Ethernet, etc.

Latenc
S o>

5 IB QDR: CClI
 New features
— Completed initial WAN optimized CCl transport 6 e 2 1026 4006
— Adding support for “virtual fabric support” (CCl Message Size (bytes)
Routed) 400
« Provides end-to-end virtual fabric over raog T DT e
heterogeneous networks via CCl over CCI! 100 | ===TCPRMAurte
800 -
 CClis now a native transport within 600
Open MPI o
— Allows quick prototyping and testing of complex o+—++—+—+——+—
use-cases. & & & & @@(@& @@% @@3’3\ %@«@ &
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Experimentation

« CCI WAN Evaluation
» ESnet 100G testbed — DOE Advanced Networking Initiative (ANI)

— Results based on communications over ANI
— 10 Gb Ethernet Myricom cards
— 9000 MTU
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Bandwidth (in MB/s)

Small messages

UDP transport

Pingpong latency
Reliable-ordered (RO),

reliable-unordered (RU),
unreliable-unordered (UU)
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UDP transport

Stream between two
endpoints

Near line rate bandwidth with
no reliability
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RMA operations
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* CCIl Semantics allow servers to

“self flow-control”

 UDP transport

 Many-to-one: 2 clients perform

RMA write operations to a single
target
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 Near line rate bandwidth with data
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Next steps - CCl Routing

» Allow routing across heterogeneous networks

ASY e —— AS2 0
— InfiniBand, Cray Gemini, Ethernet =N \ :;Q 2
o -
— Within a site and between sites KW/\‘}Z M
— R

Same CCl interface
— Messages and Remote Memory Access

WAN

Enables best performance of network

Routing Daemons

— Bridge two or more networks  Status

— Route discovery and resources — Design completed see http://cci-forum.com

— Forwards MSGs and RMA
— Multiple metrics (throughput, latency, hop count)

— Routing Daemon code in development

— Next steps
* Client routing transport - Complete router discovery and mapping
— Manages end-to-end state * End-to-end protocol
— Uses native transports for communication * Client transport

— Load-balancing when multiple routers present
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End-to-end Data Transfer Orchestration

Input Data
S e -
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— Feed-back mechanism
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Application
* (Goal: Minimize the end-to-end transfer time
* Online predict the file system and network capacity and adapt the bandwidth
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1/0 (File System) Scheduling

* Optimize 10 accesses for parallel file systems

— Investigate strategies for minimizing impact of intermittent congestion on storage
servers

— Require different strategies for read vs write, and large vs small files
— Minimize accesses to the metadata server(s)

* Design Goal
— Exploit I/O parallelism in Parallel File Systems

— Adapt I/O loads on storage servers to minimize the impact of 1/0 congestion on disks
and other systems (Tltan%

» Disk layout-aware algorithm

— Source Algorithm
« Segment files into chunks (stripe unit in PFS)
 Spawn multiple threads for 1/0Os
 Use pread() to read specific chunks of a file
« Schedule chunks based on congestion “feedback”
— Sink Algorithm
 Each “disk/lun” has a separate queue
 Maintain a thread pool, and threads are engaged to work on uncongested OSTs
* Avoid congested storage servers
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Bandwidth (GB/s)

IOPs (x10,000)

Jan 30, 2013

« 1/O usages in Bandwidth (GB/s) and in IOPs for Jan 30, 2013 (for 24 hours)
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Bandwidth (GB/s)

IOPs (x10,000)

Feb 18, 2013

* 1/O usages in Bandwidth (GB/s) and in IOPs for Feb 18, 2013 (for 24 hours)
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Test Environment

4

\ IB Network )

/ I 1 AN

Reading chunks \
vs Files - ’ E
Creating ' '

25OMB files Creating

\ 250MB flles

« OST= RAID-0 of 3 HDDs
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Evaluating Source Algorithm

» Disk Layout-Aware Algorithm vs. Naive
— Four 1/Q threads reading 20MB files, and Elght OSTs for Lustre

— Two OSTs are overloaded at a

Disk-Layout(O) shows
higher throughput
400 than Naive (O)

Throughput (MB/s)

Naive(N) with four
threads

TWO OSTS ove rload ed None of OSTs are overloaded.
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Evaluating Sink Algorithm

» Disk Layout-aware Algorithm vs. Nalve access
Eight I/O threads writing 10MB files, and Eight OSTs for Lustre
Only OST4 is overloaded

Disk-Layout(O) aware

algorithm shows throughput
nearly as high as normal

condition I

Lustre (stripe | Lustre (stripe | File per OST | Disk Layout-

width=1) w/ | width=4) w/ |(static) w/ OST4/Aware Algorithm
OST4 OST4 overloaded w/ OST4

overloaded overloaded overloaded
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Lustre (stripe | Lustre (stripe | File per OST | Disk Layout-
width=1) width=4) ware Algorithm

Overload Condition

One OST overloaded

Normal Condition
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Towards Orchestrated Scheduling
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Capacity

Infrastructure
Capacity

Scheduling may limit the goodput
based on the amount of data to be
transferred per link, not only on the
total available bandwidth

File Fragments
Flow 1
' . d - Flow 2

Time (s)
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—A? WAN: TCP bandwidth
& Q under stress

Per Stream Bandwidth Uncertainty
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Communication streams Average

Under intense bandwidth stress, random data streams will be affected, and their
potential bandwidth drastically decreased (no fairness guaranteed)
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» WAN: TCP bandwidth
under stress
%
Per Stream Bandwidth Uncertaint
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Neural Network analysis
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-
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Performance feed-back mechanism is used to learn about specific classes of
perturbations and their impact (duration and weight) on the data transfers.
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e WAN: TCP bandwidth
X Q under stress

-

Per Stream Bandwidth Uncertainty
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New perturbations will be predicted and classified. The training will continue during
the entire transfer. Traces will be used to predict characteristics of the traffic based
on temporal properties.
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—A? WAN: TCP bandwidth
& Q under stress

Per Stream Bandwidth Uncertainty
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The bandwidth will be dynamically adjusted to satisfy the requirement
determined by the Z-scheduler.
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Neural Networks

» excellent abilities to model difficult nonlinear systems

» very good alternative to traditional methods for solving complex problems in many fields,
including image processing, pattern recognition, robotics, etc

» solvers of intelligent tasks - prediction, classification, recognition, optimization, etc

» good generalized properties, self-adaptation allow considering NNs as universal tools
Multi-layer perceptron N-M-1

Output value of the perceptron

N M
Y =F; 2wj3(Fz(2Wijxi _Tj))_T
= =

Sigmoid activation function of F(x) = 1
hidden layer neurons l+e™™

Sum-Squared Error E = %(y(k) —a’g)2

Modification of weights and thresholds

Training process .

over time: P

JE* (1 P
decreasing the ¢ Aw, (1) = - () AT (1) = ~a JE" (1)
Sum-Squared 2w’ Wy(f) dT;(2)

Error

S The training algorithms: Back Propagation
: L Error and Multiple Propagation Error
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Input data : 5 events with 30 sec and
60 sec duration, total of 10 events
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Input data : 103 vectors, 63 for the
training and 40 for the testing
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Ideal result of the NN: to classify types of the events only (5 events) and type & duration of the events (10
events) with a detection rate 100% ON the first timestamp (on the THIRD SECOND from the START of the

EVENT)
Architecture of NN: Multi-layer perceptron, 10 input, 10 hidden and 1 output neuron, sigmoid activation

Training of NN: Back-propagation error, SSE=0.048, 400000 training iterations, moving simulation mode,
200000 training iteration of re-training, 14 seconds of re-training on Inter Core2

Results on the training set (63 vectors):

- detection rate to classify only type of the event (5 events p1-p5) - 93,7%

- detection rate to classify type&duration of the event both (10 events p1-p5 with 30 sec and 60 sec) - 73.1%
Results on the testing set (40 vectors):

- detection rate to classify only type of the event (5 events p1-p5) - 40,0%

- detection rate to classify type&duration of the event both (10 events p1-p5 with 30 sec and 60 sec) - 25.0%

Results showed good adaptability and good potential capabilities of NNs to solve this task



Future Work

* Investigate hierarchical storage awareness
— How to utilize NVM devices in the orchestration framework?
— Investigating the use of NVM devices for extended memory buffer space using
NVMAlloc library
* Integrate statistics on 1/O from Titan in the prediction framework

— What predictions can be made on the application access pattern and on the file
system?

— Can we match the prediction of the application access pattern with the
prediction about the network status?

— Can we minimize the impact of data movement to large-scale simulations?
* Improve the detection rate of the classification by the Neuron Network

» Complete the implementation of the stream middleware, allowing end-
to-end traffic management
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Questions?

* Please see http://cci-forum.com/ for papers, presentation
and source code related to this project

This work is sponsored in part by the Office of Advanced Scientific Computing
Research (ASCR); U.S. Department of Energy. The work was performed in part
at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC
under Contract No. De-AC05-000R22725.
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